3.27 \(\int \frac{(d+e x)^3 (a+b \log (c x^n))}{x^5} \, dx\)

Optimal. Leaf size=90 \[ -\frac{(d+e x)^4 \left (a+b \log \left (c x^n\right )\right )}{4 d x^4}-\frac{b d^2 e n}{3 x^3}-\frac{b d^3 n}{16 x^4}-\frac{3 b d e^2 n}{4 x^2}+\frac{b e^4 n \log (x)}{4 d}-\frac{b e^3 n}{x} \]

[Out]

-(b*d^3*n)/(16*x^4) - (b*d^2*e*n)/(3*x^3) - (3*b*d*e^2*n)/(4*x^2) - (b*e^3*n)/x + (b*e^4*n*Log[x])/(4*d) - ((d
 + e*x)^4*(a + b*Log[c*x^n]))/(4*d*x^4)

________________________________________________________________________________________

Rubi [A]  time = 0.082418, antiderivative size = 90, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {37, 2334, 12, 43} \[ -\frac{(d+e x)^4 \left (a+b \log \left (c x^n\right )\right )}{4 d x^4}-\frac{b d^2 e n}{3 x^3}-\frac{b d^3 n}{16 x^4}-\frac{3 b d e^2 n}{4 x^2}+\frac{b e^4 n \log (x)}{4 d}-\frac{b e^3 n}{x} \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x)^3*(a + b*Log[c*x^n]))/x^5,x]

[Out]

-(b*d^3*n)/(16*x^4) - (b*d^2*e*n)/(3*x^3) - (3*b*d*e^2*n)/(4*x^2) - (b*e^3*n)/x + (b*e^4*n*Log[x])/(4*d) - ((d
 + e*x)^4*(a + b*Log[c*x^n]))/(4*d*x^4)

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 2334

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = I
ntHide[x^m*(d + e*x^r)^q, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[SimplifyIntegrand[u/x, x], x], x]
] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] && IntegerQ[m] &&  !(EqQ[q, 1] && EqQ[m, -1])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{(d+e x)^3 \left (a+b \log \left (c x^n\right )\right )}{x^5} \, dx &=-\frac{(d+e x)^4 \left (a+b \log \left (c x^n\right )\right )}{4 d x^4}-(b n) \int -\frac{(d+e x)^4}{4 d x^5} \, dx\\ &=-\frac{(d+e x)^4 \left (a+b \log \left (c x^n\right )\right )}{4 d x^4}+\frac{(b n) \int \frac{(d+e x)^4}{x^5} \, dx}{4 d}\\ &=-\frac{(d+e x)^4 \left (a+b \log \left (c x^n\right )\right )}{4 d x^4}+\frac{(b n) \int \left (\frac{d^4}{x^5}+\frac{4 d^3 e}{x^4}+\frac{6 d^2 e^2}{x^3}+\frac{4 d e^3}{x^2}+\frac{e^4}{x}\right ) \, dx}{4 d}\\ &=-\frac{b d^3 n}{16 x^4}-\frac{b d^2 e n}{3 x^3}-\frac{3 b d e^2 n}{4 x^2}-\frac{b e^3 n}{x}+\frac{b e^4 n \log (x)}{4 d}-\frac{(d+e x)^4 \left (a+b \log \left (c x^n\right )\right )}{4 d x^4}\\ \end{align*}

Mathematica [A]  time = 0.0519544, size = 109, normalized size = 1.21 \[ -\frac{12 a \left (4 d^2 e x+d^3+6 d e^2 x^2+4 e^3 x^3\right )+12 b \left (4 d^2 e x+d^3+6 d e^2 x^2+4 e^3 x^3\right ) \log \left (c x^n\right )+b n \left (16 d^2 e x+3 d^3+36 d e^2 x^2+48 e^3 x^3\right )}{48 x^4} \]

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x)^3*(a + b*Log[c*x^n]))/x^5,x]

[Out]

-(12*a*(d^3 + 4*d^2*e*x + 6*d*e^2*x^2 + 4*e^3*x^3) + b*n*(3*d^3 + 16*d^2*e*x + 36*d*e^2*x^2 + 48*e^3*x^3) + 12
*b*(d^3 + 4*d^2*e*x + 6*d*e^2*x^2 + 4*e^3*x^3)*Log[c*x^n])/(48*x^4)

________________________________________________________________________________________

Maple [C]  time = 0.14, size = 569, normalized size = 6.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^3*(a+b*ln(c*x^n))/x^5,x)

[Out]

-1/4*b*(4*e^3*x^3+6*d*e^2*x^2+4*d^2*e*x+d^3)/x^4*ln(x^n)-1/48*(12*a*d^3+48*ln(c)*b*e^3*x^3+72*a*d*e^2*x^2+48*a
*d^2*e*x+12*ln(c)*b*d^3+24*I*Pi*b*e^3*x^3*csgn(I*x^n)*csgn(I*c*x^n)^2+36*I*Pi*b*d*e^2*x^2*csgn(I*c*x^n)^2*csgn
(I*c)-36*I*Pi*b*d*e^2*x^2*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)-24*I*Pi*b*d^2*e*x*csgn(I*x^n)*csgn(I*c*x^n)*csgn
(I*c)+36*I*Pi*b*d*e^2*x^2*csgn(I*x^n)*csgn(I*c*x^n)^2+24*I*Pi*b*d^2*e*x*csgn(I*c*x^n)^2*csgn(I*c)-24*I*Pi*b*e^
3*x^3*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)+24*I*Pi*b*d^2*e*x*csgn(I*x^n)*csgn(I*c*x^n)^2+72*ln(c)*b*d*e^2*x^2+4
8*ln(c)*b*d^2*e*x+48*a*e^3*x^3+3*b*d^3*n-24*I*Pi*b*e^3*x^3*csgn(I*c*x^n)^3+24*I*Pi*b*e^3*x^3*csgn(I*c*x^n)^2*c
sgn(I*c)-36*I*Pi*b*d*e^2*x^2*csgn(I*c*x^n)^3-24*I*Pi*b*d^2*e*x*csgn(I*c*x^n)^3+48*b*e^3*n*x^3+16*b*d^2*e*n*x+3
6*b*d*e^2*n*x^2-6*I*Pi*b*d^3*csgn(I*c*x^n)^3-6*I*Pi*b*d^3*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)+6*I*Pi*b*d^3*csg
n(I*x^n)*csgn(I*c*x^n)^2+6*I*Pi*b*d^3*csgn(I*c*x^n)^2*csgn(I*c))/x^4

________________________________________________________________________________________

Maxima [A]  time = 1.13851, size = 193, normalized size = 2.14 \begin{align*} -\frac{b e^{3} n}{x} - \frac{b e^{3} \log \left (c x^{n}\right )}{x} - \frac{3 \, b d e^{2} n}{4 \, x^{2}} - \frac{a e^{3}}{x} - \frac{3 \, b d e^{2} \log \left (c x^{n}\right )}{2 \, x^{2}} - \frac{b d^{2} e n}{3 \, x^{3}} - \frac{3 \, a d e^{2}}{2 \, x^{2}} - \frac{b d^{2} e \log \left (c x^{n}\right )}{x^{3}} - \frac{b d^{3} n}{16 \, x^{4}} - \frac{a d^{2} e}{x^{3}} - \frac{b d^{3} \log \left (c x^{n}\right )}{4 \, x^{4}} - \frac{a d^{3}}{4 \, x^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(a+b*log(c*x^n))/x^5,x, algorithm="maxima")

[Out]

-b*e^3*n/x - b*e^3*log(c*x^n)/x - 3/4*b*d*e^2*n/x^2 - a*e^3/x - 3/2*b*d*e^2*log(c*x^n)/x^2 - 1/3*b*d^2*e*n/x^3
 - 3/2*a*d*e^2/x^2 - b*d^2*e*log(c*x^n)/x^3 - 1/16*b*d^3*n/x^4 - a*d^2*e/x^3 - 1/4*b*d^3*log(c*x^n)/x^4 - 1/4*
a*d^3/x^4

________________________________________________________________________________________

Fricas [A]  time = 1.0451, size = 352, normalized size = 3.91 \begin{align*} -\frac{3 \, b d^{3} n + 12 \, a d^{3} + 48 \,{\left (b e^{3} n + a e^{3}\right )} x^{3} + 36 \,{\left (b d e^{2} n + 2 \, a d e^{2}\right )} x^{2} + 16 \,{\left (b d^{2} e n + 3 \, a d^{2} e\right )} x + 12 \,{\left (4 \, b e^{3} x^{3} + 6 \, b d e^{2} x^{2} + 4 \, b d^{2} e x + b d^{3}\right )} \log \left (c\right ) + 12 \,{\left (4 \, b e^{3} n x^{3} + 6 \, b d e^{2} n x^{2} + 4 \, b d^{2} e n x + b d^{3} n\right )} \log \left (x\right )}{48 \, x^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(a+b*log(c*x^n))/x^5,x, algorithm="fricas")

[Out]

-1/48*(3*b*d^3*n + 12*a*d^3 + 48*(b*e^3*n + a*e^3)*x^3 + 36*(b*d*e^2*n + 2*a*d*e^2)*x^2 + 16*(b*d^2*e*n + 3*a*
d^2*e)*x + 12*(4*b*e^3*x^3 + 6*b*d*e^2*x^2 + 4*b*d^2*e*x + b*d^3)*log(c) + 12*(4*b*e^3*n*x^3 + 6*b*d*e^2*n*x^2
 + 4*b*d^2*e*n*x + b*d^3*n)*log(x))/x^4

________________________________________________________________________________________

Sympy [B]  time = 7.80881, size = 206, normalized size = 2.29 \begin{align*} - \frac{a d^{3}}{4 x^{4}} - \frac{a d^{2} e}{x^{3}} - \frac{3 a d e^{2}}{2 x^{2}} - \frac{a e^{3}}{x} - \frac{b d^{3} n \log{\left (x \right )}}{4 x^{4}} - \frac{b d^{3} n}{16 x^{4}} - \frac{b d^{3} \log{\left (c \right )}}{4 x^{4}} - \frac{b d^{2} e n \log{\left (x \right )}}{x^{3}} - \frac{b d^{2} e n}{3 x^{3}} - \frac{b d^{2} e \log{\left (c \right )}}{x^{3}} - \frac{3 b d e^{2} n \log{\left (x \right )}}{2 x^{2}} - \frac{3 b d e^{2} n}{4 x^{2}} - \frac{3 b d e^{2} \log{\left (c \right )}}{2 x^{2}} - \frac{b e^{3} n \log{\left (x \right )}}{x} - \frac{b e^{3} n}{x} - \frac{b e^{3} \log{\left (c \right )}}{x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**3*(a+b*ln(c*x**n))/x**5,x)

[Out]

-a*d**3/(4*x**4) - a*d**2*e/x**3 - 3*a*d*e**2/(2*x**2) - a*e**3/x - b*d**3*n*log(x)/(4*x**4) - b*d**3*n/(16*x*
*4) - b*d**3*log(c)/(4*x**4) - b*d**2*e*n*log(x)/x**3 - b*d**2*e*n/(3*x**3) - b*d**2*e*log(c)/x**3 - 3*b*d*e**
2*n*log(x)/(2*x**2) - 3*b*d*e**2*n/(4*x**2) - 3*b*d*e**2*log(c)/(2*x**2) - b*e**3*n*log(x)/x - b*e**3*n/x - b*
e**3*log(c)/x

________________________________________________________________________________________

Giac [A]  time = 1.35221, size = 213, normalized size = 2.37 \begin{align*} -\frac{48 \, b n x^{3} e^{3} \log \left (x\right ) + 72 \, b d n x^{2} e^{2} \log \left (x\right ) + 48 \, b d^{2} n x e \log \left (x\right ) + 48 \, b n x^{3} e^{3} + 36 \, b d n x^{2} e^{2} + 16 \, b d^{2} n x e + 48 \, b x^{3} e^{3} \log \left (c\right ) + 72 \, b d x^{2} e^{2} \log \left (c\right ) + 48 \, b d^{2} x e \log \left (c\right ) + 12 \, b d^{3} n \log \left (x\right ) + 3 \, b d^{3} n + 48 \, a x^{3} e^{3} + 72 \, a d x^{2} e^{2} + 48 \, a d^{2} x e + 12 \, b d^{3} \log \left (c\right ) + 12 \, a d^{3}}{48 \, x^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(a+b*log(c*x^n))/x^5,x, algorithm="giac")

[Out]

-1/48*(48*b*n*x^3*e^3*log(x) + 72*b*d*n*x^2*e^2*log(x) + 48*b*d^2*n*x*e*log(x) + 48*b*n*x^3*e^3 + 36*b*d*n*x^2
*e^2 + 16*b*d^2*n*x*e + 48*b*x^3*e^3*log(c) + 72*b*d*x^2*e^2*log(c) + 48*b*d^2*x*e*log(c) + 12*b*d^3*n*log(x)
+ 3*b*d^3*n + 48*a*x^3*e^3 + 72*a*d*x^2*e^2 + 48*a*d^2*x*e + 12*b*d^3*log(c) + 12*a*d^3)/x^4